

Embedding a manifold in \mathbb{R}^n

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 27 July, 2018 (at 21:57)

1: Embedding Lemma. Suppose \mathbf{M} is a compact \mathfrak{D} -dimensional manifold (with \mathfrak{D} finite). Then there exists a positive integer n such that \mathbf{M} can be embedded in \mathbb{R}^n . This means that there exists a homeomorphism

$$f: \mathbf{M} \hookrightarrow \widehat{\mathbf{M}} \subset \mathbb{R}^n,$$

where $\widehat{\mathbf{M}}$ has the topology induced by \mathbb{R}^n . \diamond

Proof. It suffices to find a continuous injection $f: \mathbf{M} \hookrightarrow \mathbb{R}^n$. For then f is a continuous bijection from the compact space \mathbf{M} to the Hausdorff space $\widehat{\mathbf{M}} := f(\mathbf{M})$ and consequently is a homeomorphism.

To construct f , cover \mathbf{M} with some finite collection \mathcal{C} of patches i.e,

$$\mathbf{M} \subset \bigcup_{P \in \mathcal{C}} P, \quad \begin{array}{l} \text{each patch equipped with} \\ \text{an onto homeomorphism} \\ h_P: P \rightarrow \mathbb{R}^{\mathfrak{D}}, \end{array}$$

Suppose, for each $P \in \mathcal{C}$, that we could find a continuous map $\varphi_P: \mathbf{M} \rightarrow \mathbb{R}^{\mathfrak{D}+1}$ with

$$[x, y \in P \text{ and } x \neq y] \implies \varphi_P(x) \neq \varphi_P(y).$$

Then the cartesian product map,

$$f := \prod_{P \in \mathcal{C}} \varphi_P,$$

would be a continuous injection (as desired) from \mathbf{M} into \mathbb{R}^n , where $n := |\mathcal{C}| \cdot [\mathfrak{D}+1]$.

Now let $\mathbb{S}^{\mathfrak{D}}$ denote the unit \mathfrak{D} -sphere inside of $\mathbb{R}^{\mathfrak{D}+1}$. We know that $\mathbb{R}^{\mathfrak{D}}$ “extended by a point at infinity” is homeomorphic with $\mathbb{S}^{\mathfrak{D}}$. Let

$$\Phi: \mathbb{R}^{\mathfrak{D}} \sqcup \{\infty\} \hookrightarrow \mathbb{S}^{\mathfrak{D}}$$

be one such homeomorphism; say, stereographic projection.

To obtain φ_P , notice that the patch homeomorphism $h_P: P \rightarrow \mathbb{R}^{\mathfrak{D}}$ can be extended to a continuous map

$$\widehat{h}_P: \mathbf{M} \rightarrow \mathbb{R}^{\mathfrak{D}} \sqcup \{\infty\}$$

by $\widehat{h}_P(x) := \infty$ for all $x \in \mathbf{M} \setminus P$. So we can create the desired map $\varphi_P: \mathbf{M} \rightarrow \mathbb{R}^{\mathfrak{D}+1}$ by setting $\varphi_P := \Phi \circ \widehat{h}_P$. \diamond

Whoa! 04May2010: But why should the above \widehat{h}_P be continuous? We certainly can force \widehat{h}_P to be cts, by insisting (which we can, WLOG) that the given h_P is a homeomorphism *onto* $\mathbb{R}^{\mathfrak{D}}$.

Remark. Now suppose that \mathbf{M} is differentiable. Alas, the constructed embedding need not be differentiable.

However, the map Φ can be precomposed with a self-map of $\mathbb{R}^{\mathfrak{D}} \sqcup \{\infty\}$ which pulls the copy of $\mathbb{R}^{\mathfrak{D}}$ towards the point “ ∞ ” rapidly; sufficiently rapidly that each map \widehat{h}_P has derivative zero at the boundary of P . \square

Filename: [Problems/Topology/embedding^.latex](#)
 As of: Sunday 06Sep2015. Typeset: 27Jul2018 at 21:57.